Robustly representing uncertainty through sampling in deep neural networks

نویسندگان

  • Patrick McClure
  • Nikolaus Kriegeskorte
چکیده

As deep neural networks (DNNs) are applied to increasingly challenging problems, they will need to be able to represent their own uncertainty. Modelling uncertainty is one of the key features of Bayesian methods. Using Bernoulli dropout with sampling at prediction time has recently been proposed as an efficient and well performing variational inference method for DNNs. However, sampling from other multiplicative noise based variational distributions has not been investigated in depth. We evaluated Bayesian DNNs trained with Bernoulli or Gaussian multiplicative masking of either the units ar X iv :1 61 1. 01 63 9v 4 [ cs .L G ] 1 S ep 2 01 7 (dropout) or the weights (dropconnect). We tested the calibration of the probabilistic predictions of Bayesian fully connected and convolutional DNNs on two visual inference tasks (MNIST and CIFAR-10). Sampling at prediction time increased the quality of the DNNs’ uncertainty estimates. Sampling weights, whether Gaussian or Bernoulli, led to more accurate representation of uncertainty compared to sampling of units. However, sampling units using either Gaussian or Bernoulli dropout led to increased convolutional neural network (CNN) classification accuracy. Based on these findings we used both Bernoulli dropout and Gaussian dropconnect concurrently, which we show approximates the use of a spike-and-slab variational distribution without increasing the number of learned parameters. We found that spike-and-slab sampling efficiently combined the advantages of the other methods: it classifies with high accuracy and robustly represents inferential uncertainty for all tested architectures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representing inferential uncertainty in deep neural networks through sampling

As deep neural networks (DNNs) are applied to increasingly challenging problems, they will need to be able to represent their own uncertainty. Modeling uncertainty is one of the key features of Bayesian methods. Scalable Bayesian DNNs that use dropout-based variational distributions have recently been proposed. Here we evaluate the ability of Bayesian DNNs trained with Bernoulli or Gaussian dis...

متن کامل

Over-Sampling in a Deep Neural Network_arxiv

Deep neural networks (DNN) are the state of the art on many engineering problems such as computer vision and audition. A key factor in the success of the DNN is scalability – bigger networks work better. However, the reason for this scalability is not yet well understood. Here, we interpret the DNN as a discrete system, of linear filters followed by nonlinear activations, that is subject to the...

متن کامل

Classification of Things in DBpedia using Deep Neural Networks

The Semantic Web aims at representing knowledge about the real world at web scale things, their attributes and relationships among them can be represented as nodes and edges in an inter-linked semantic graph. In the presence of noisy data, as is typical of data on the Semantic Web, a software Agent needs to be able to robustly infer one or more associated actionable classes for the individuals ...

متن کامل

Uncertainty Quality | Uncertainty in Deep Learning

In this chapter we assess the techniques developed in the previous chapters, concentrating on questions such as what our model uncertainty looks like. We experiment with different model architectures and approximating distributions, and use various regression and classification settings. Assessing the models’ confidence quantitatively we can see how much we sacrifice in our attempt at deriving ...

متن کامل

Efficient exploration with Double Uncertain Value Networks

This paper studies directed exploration for reinforcement learning agents by tracking uncertainty about the value of each available action. We identify two sources of uncertainty that are relevant for exploration. The first originates from limited data (parametric uncertainty), while the second originates from the distribution of the returns (return uncertainty). We identify methods to learn th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017